

Service news

A SERVICE PUBLICATION OF LOCKHEED-GEORGIA COMPANY A DIVISION OF LOCKHEED CORPORATION

Editor Charles I. Gale

Associate Editors Doug Brashear James A. Loftin Vera A. Taylor

Art Direction & Production Teri L. Mohr

Vol. 13, No. 1, January - March 1986 CONTENTS

- 2 Focal Point Howard Burnette General Manager, Field Service
- 3 MLG Rub A Step-by-Step Approach to Solving MLG Contact Problems
- 7 Brake Piston Insulator Inspection Guidelines
- 8 Controlling T-56 Engine Starting Temperature Proper Adjustment of the TD Null Orifice Valve Is a Key Factor
- 9 Starter Control Valve Adjustment Increasing the Rise Rate Protects Starter Components
- 12 Index by Subject, 1974-1985 Vol. 1, No. 1 -Vol. 12, No. 4

Cover: AS winter tightens its grip in the Northern Hemisphere, the all-weather capabilities of the tough, versatile Hercules aircraft become a vitalfactorin keeping schedules in tact and supply lines open.

Editor's note: The cover notes in Vol. 12, No. 4 statethat over 1800 Hercules aircraft have been built. That figure included both the units delivered and those **Under** contract at the time. As of mid-December 1985. a total of 1765 Hercules aircraft had been delivered.

Published by Lockbeed-Georgia Company, a Division of Lockheed Corporation. Information contained in this issue is considered by Lockheed-Georgia Company to be accurate and authoritative; it should not be assumed, however, that this material has received approval from any governmental agency or military service unless it is specifically noted. This publication is for planning and information purposes only, and it is not to be construed as authority for making charges on aircraft or equipment, or as superseding any established operational or maintenance procedures or policies. The following marks are registered and owned by Lockheed Corporation: " "hooseev ," "Hercules," and "JetStar," Written permission must be obtained from Lockheed-Georgia Company before republishing any material in this periodical. Address all communications to Editor, Service News, Department 64-31, Zone 278, Lockheed-Georgia Company, Marietta, Georgia, 30063. Copyright 1985 Lockheed Corporation.

Field Service- Dedicated to Serve You

The first operational Hercules aircraft was delivered in December **1956 to** Ardmore. Oklahoma. Almost 1800 Hercules airlifters and 0V&I 17 million flying hours later, the Lockheed-Georgia Company continues with a strong commitment to provide the support necessary for every operator to achieve maximum utilization of their aircraft and associated equipment.

Having been associated with Lockheed for averthirty years and in my present position, A m keenly aware of the Lockheed **commitment and dedication to** support its products. We have a Field Service organization designed to provide technical assistance to **every customer**, world-wide, through on-site service representatives, regional service representatives, and at the factory.

The **long** history, **Outstanding accomplishments**, and remarkable record of the Hercules is not only a tribute to the aircraft, hut a tribute to the personnel of the many operators of the aircraft throughout the world.

We **like to think that our** Field Service **Representatives played an importantand** vital role in making these achievements possible. We are proud of the unique contribution Lockheed-Georgia Field Service Representatives have made to this record of success. A traditionofservice born with the delivery of that first Hercules lives today through the personal dedication of these specialists to the success of the aircraft and the operators who fly them.

Field Service Representatives are Lockheed career professionals who are willing to serve in support of our products anywhere the aircraft operates and take pride in theoperational effectiveness of the customers they serve. These representatives provide a key and vital link in a vast communication network between operators and the factory. Their reports of customer operations, successes and problems. are read by all Lockheed organizations and top management. Information from these reports is not only used toaddress immediate problems hut serves to enhance future aircraft performance through improved maintenance and inspection procedures and manufacturing techniques.

Lockheed-Georgia Field Service is dedicated to serve you, the Hercules operator, whether on the flight line, in your shops, in the classroom, or back in Georgia at our factory. Below, have identified the key Hercules service management people for your information and use. Let us hear from you.

Sincerely,

Howard B.

Howard Burnette General Manager, Field Service

C-130/Hercules Service Department Joe Parnigoni, Manager Telephone 404-980-3904 Telex 542642 Fax 404-980-3953

Domestic Service Section Ray Brandt, Supervisor Telephone 404~980.3912 International Service Section Jim Barnes, Supervisor Telephone 404-980-3911

Causes and Cures

Operators of Hercules aircraft may on some occasions find evidence that there has been contact between the main landing gear torque strut and the vertical beams, or between the main gear piston and shelf bracket. This contact could be the result of any or a combination of the following causes:

- Shoe misadjustment
- · Shoe or track wear
- Tire unbalance

The nature of the indications of landing gear rub are helpful in determining the extent of corrective action necessary to deal with the problem. For example, an airplane with suspected gear rub where only scratched or chipped paint is observed is considered flyable until adjustments can be made to provide more clearance. Do not, however, continue to operate the airplane for more than 100 flight hours without taking action to relieve the rub. An airplane that shows evidence of rubbing in by Charles W. Callan Aircraft Design Engineer, Senior

which metal-to-metal contact is taking place, causing gouging or scratching of the surfaces, is not considered flyable. Immediate corrective action is mandatory.

The following steps can be taken to correct the rubbing condition:

- 1. Check the lower shoe gap between the inboard face of the shoe and the face of the track. The gap should be 0.002 to 0.007 inch, measured with the airplane on jacks.
- 2. Check the lower shoe fore and aft clearances to ensure that they are not excessive. Adjust if required (see Figure 1).
- 3. Check the adjustment of the upper shoes for proper clearance and make sure that the tops of both shoes are within 0.06 inch of being an equal distance above the swivel bracket.
- 4. Check the upper shoe outboard facings (see Figure

 for excessive wear according to the instructions in the appropriate maintenance manual, and replace if necessary.

5. Check for unbalanced wheel and tire assemblies and correct if necessary.

If a main landing gear strut has a rubbing condition that cannot be corrected by the above measures, check to see whether the aircraft has the thick (0.130 inch) serrated plates (P/N 372602-11, and -1R) installed between the upper shoes and the swivel bracket (see Figure 3).

If the thick serrated plates are present on the aircraft in question, the rubbing condition can be relieved by substituting the thin (0.065 to 0.070 inch) serrated plates (P/N 372602-3 and -4). The use of the thinner serrated plates shifts the position of the main landing gear piston/axle slightly outboard, thereby increasing the clearance in the contact area.

The thinner plates are interchangeable with the thick plates and may be substituted if increased clearance is desired.

Note that plates should be replaced in pairs, and that a combination of thick and thin plates on one swivel bracket is not acceptable. If the P/N 372602-3 and -4

Figure 3. Upper track shoe installation.

Figure 4. Clearance check between swivel bracket and pillow block.

Figure 3. Pillow block installation.

thin serrated plates are not readily available, the -lL and -lR thick plates can be modified to the thinner -3 and -4 configuration by machining the inside of the channel section web to 0.065 to 0.070 inch in thickness. Then replate the reworked area with cadmium.

When thin serrated plates are substituted, care must be taken to ensure that there is adequate **clearance** between the swivel bracket and the ball screw pillow block (see Figure 4). It will be necessary to verify that this clearance exists during functional extension and retraction operations on the ground. The clearance should be no less than 0.015 inch. If the clearance is less than this, the laminated shims (P/N 373556-l) between the pillow block and the side panel may be reduced in thickness until the required clearance is obtained (see Figure 5). If there is only a single point of contact, an additional option may be considered for obtaining the required clearance. That option is to remove up to 0.020 inch of the pillow block edge material at the point where the interference is taking place.

BRAKE PISTON INSULATOR INSPECTION GUIDELINES

There have been a number of reports of Goodyear multi-disk brakes being removed because of crushed or broken insulators. Here is a little background information on the problem, and some guidelines for inspection and acceptance or rejection of brake piston insulators.

Originally there was no specific requirement for compression strength or load testing of brake piston insulators. After the problem of broken and crushed insulators was reported, the parts were tested by Raymark and Abex, the two vendors concerned. The tests revealed that the Raymark parts crushed at 9,000-13,000 pounds, while the Abex parts failed at 20,000-25,000 pounds.

In December 1983, a minimum acceptable crush load requirement of 18,000 pounds was included in the speci-

fication. Goodyear also added a requirement that the vendors stamp a letter H and the supplier identification on same face of the insulator as the part number. Any insulator so marked will be good part.

For inspection of used insulators, parts that are of inadequate strength usually delaminate and are therefore easy to identify. Any insulator that is starting to delaminate should be replaced. Also check visually for blisters, nicks, and cracks. Surface cracks are acceptable; but cracks that extend into the screw hole are cause for rejection. The height of the insulator is also important in determining if a part may be reinstalled for another run. Brake piston insulators less than 0.669 inches high should not be continued in service.

CONTROLLING T-56 FNGINE STARTING TEMPERATURE

Occasionally we note excessive turbine inlet temperature (TIT) during engine start, and our usual reaction is to check temperature datum (TD) amplifier calibration. However, improper calibration or malfunction of the TD amplifier is not the cause of excessive TIT during engine start. If the propeller blade angle is properly adjusted and the starter is supplied with an adequate supply of air, then the cause of high TIT is almost invariably excessive fuel flow. In any event, the TD amplifier cannot prevent excessive TIT; it can only reduce fuel flow after the overtemp occurs by driving the TD valve to a "take" position.

Proper operation of the TD system will prevent serious damage to the engine turbine, but repeated overtemps (TIT in excess of 830*C) during start are somewhat life-limiting for the engine. Therefore, in daily operation, the engine hydromechanical system should control fuel flow so that an overtemp will occur only if induced by an abnormal condition such as excessive blade angle, low bleed air pressure, high ambient air temperature, etc.

Proper fuel flow during start and acceleration is a function of the fuel control metering system output that is fine-tuned by manual adjustment of the TD valve null orfice. If the TIT consistently exceeds 820*C and then

is reduced by the TD amplifier start limit function, the TD valve null orifice definitely needs to be adjusted toward the decrease fuel flow direction. Conversely, if TIT during start is less than 780°C, the null orifice requires an increase adjustment in order for the engine to accelerate properly.

The "Null Engine Start" check will determine if the engine hydromechanical fuel schedule is properly adjusted. This check establishes that a safe engine start could be accomplished in the event of a TD system failure at a remote location where there is no maintenance capability.

Please remember these points when diagnosing and correcting an excessive TIT discrepancy that occurs during engine start and acceleration:

- 1. The TD valve null orifice adjustment is provided for the sole purpose of matching the hydromechanical fuel system output to the engine fuel requirements during start and acceleration.
- 2. The TD valve null orifice adjustment should never be used to compensate for rich or lean conditions during normal operation.

Longer Life for Starter Parts

STARTER CONTROL VALVE ADJUSTMENT

Increasing the Rise Rate Protects Starter Components

Later model Bendix starters (P/N 36E84-18QD or -18QF, for example) are equipped with a stronger clutch return spring. The stronger spring may, under certain circumstances, allow the starter to spool up to a higher RPM before the starter engages. This higher engagement RPM may cause a significant increase in the wear rate on the clutch and coupling teeth, thereby reducing the service life of these components. Bendix Service Bulletin No. 124A has been issued to establish the procedure to elevate the rise rate of the 38E73 starter control valves in order to make them compatible with the stronger return springs. Starter control valves which have been adjusted in compliance with the service bulletin may be identified by the letter "A" following the serial number on their name plate.

Note that the increased rise rate called for in the service bulletin will have no adverse effects on earlier configuration Bendix, AiResearch or Hamilton Standard starters currently being used on C-130 or L-IOO aircraft.

The starter control valves that Bendix Service Bulletin No. 124A applies to are as follows:

Allied/Bendix Fluid Power Division Starter Control Valve models:

38E73 - 4A S/N 1538 and earlier

38373 - 5A S/N 201 and earlier

38E73 - 7A S/N 802 and earlier

Some starter control valves have been previously adjusted at the factory and do not have the "A" stamped after the serial number on the nameplate. If this is the case, the adjustment stem will already be extended 1/2 inch from the face of the rise rate control housing and will not require further adjustment (see Figure 1). For this reason, be sure to check this dimension before any adjustment is made to the unit.

Adjustment Procedure

- First, locate the rise rate control valve housing on the starter valve. It is located between the 2-pin solenoid connector and the servo-to-regulator tube (see Figure 2). The rise rate control adjusting stem (No. 10-32 thread) is situated above the large regulator backup screw plug. Both the adjusting stem and its locknut are covered with orange torque seal.
- 2. Scrape off the majority of the torque seal on the adjustment stem and lock nut, while exercising caution not to damage the adjustment screw threads.
- 3. Use a stiff non-metallic brush and the acetone solvent (or equivalent) to remove the torque seal remaining in the adjustment stem threads. It is important that the adjustment screw threads be properly cleaned without damaging them in the process. Binding may occur between the locknut and adjusting screw if the threads are not properly cleaned or are damaged.

- 4. Place a suitable blade-type screwdriver into the adjustment screw stem slot to hold it stationary while using a 1/4-inch wrench to unscrew (counterclockwise direction) the locknut only as required to loosen the assembly (about 1/2 turn).
- 5. Remove the wrench from the locknut and use the screwdriver to unscrew the adjustment stem four (4) complete turns (counterclockwise direction). Be very careful NOT to unscrew the adjustment stem more than four (4) turns since doing so may cause the stem to fall out. With this accomplished, hold the stem stationary with the screwdriver and carefully tighten the locknut (clockwise direction) as required to hold the stem in place.
- 6. Apply new torque seal to the threads of the stem.
- 7. Add the letter "A" after the serial number on the name plate on starter control valves which have been adjusted in this manner.

Figure 1. Adjustment stem measurement.

INDEX by SUBJECT VOL.1, NO.1 through VOL.12, NO.4 1974–1985

AIRFRAME		L	AIRFRAME (co	ntd)	1
	Issue	Page		Issue	Page
ADJUSTING LANDING LIGHTS	VOL. 8, NO. 3 JUL-SEP '81	11	FACT SHEET Basic Data on the C-130H and L-100-30 at a Glance	VOL. 6, NO. 4 OCT-DEC '79	6
AFT CARGO DOOR UPLOCK BINDING	VOL. 8, NO. 3 JUL-SEP '81	8	FLIGHT CONTROL CABLE TENSION REGULATORS	VOL. 3, NO. 3 JUL-SEP '76	14
AIRFRAME A Brief Discussion of C-130H and L-100-30 Airframe Features	VOL. 6, NO. 4 OCT-DEC '79	7	Description and Operation of Cable Tension Regulators		
THE AN/ART-31 RADIO COMPARTMENT DOOR Making It Secure	VOL. 8, NO. 4 OCT-DEC '81	10	THE HERCULES AIRCRAFT: A STUDY IN EVOLVING MATERIALS AND PROCESSES TECHNOLOGY	VOL.8, NO. 3 JUL-SEP '81	3
ANOTHER GREASE-GREAT IMPROVEMENT Use of ML-G-81 322 Avoids Paint	VOL. 7, NO. 3 JUL-SEP '80	19	HERCULES CREW ENTRANCE DOOR OPEN WARNING SWITCH ADJUSTMENT	VOL. 2, NO. 1 JAN-MAR '75	13
Damage			INFLIGHT VACUUM CLEANER SYSTEM	VOL.12, NO. OCT-DEC '85	4 12
CARGO FLOOR SHORING Protecting the Floor From Damage	VOL. 6, NO. 2 APR-JUN '79	18	Pressurization Powers an Ingenious Cleaner		
CARGO RAMP RIGGING	VOL. 4, NO. 1 JUL-SEP '79	3	KEEP A TIGHT SHIP Care and Handling of Pressurization Seals	VOL. 6, NO. 2 APR-JUN '79	3
Making Sure the Cargo Ramp Is Properly Rigged	VOL. 12. NO. 1 JAN-MAR '85	3	KEEPING THE FRONT BEAM CLEAN Preventing Corrosion in the	VOL. 10, NO. OCT-DEC '83	4 11
CLIP-LOCKING TURNBUCKLES	VOL. 12, NO. 4 OCT-DEC '85	6	LIFE RAFT VENT VALVE	VOL. 10, NO. 2	2 10
CONTROLLING RUDDER THRUST BEARING WEAR	VOL. 10, NO. 3	3	POSITIONING	APR-JUN '83	
CREW DOOR RIGGING	VOL. 6, NO. 3	3	LIFE RAFIS	APR-JUN '83	3
CREW ENTRANCE DOOR CABLE	VOL. 4, NO. 3	17	NOSEJACKPADNUTPLATES Part Numbers	VOL. 7, NO. 1 JAN-MAR '80	13
Adding a Support Cable to the Crew Entrance Door	JUL-SEP 77		NUTS, BOLTS, AND SCREWS	vOL. 2, NO. 3 JUL-SEP '75	3
DELAMINATION OF WHEEL WELL DOORS	VOL. 2, NO. 4 OCT-DEC '75	15	PRECIPITATION STATIC DISSIPATION	VOL. 4, NO. 3 JUL-SEP '77	20
DIMENSIONS C-130H and L-100-30 External Dimensions	vOL. 6, NO. 4 OCT-DEC '79	6	Causes and Solutions for Precipitation Static		

13

AIRFRAME (contd)

ELECTRICAL AND AVIONICS (contd)

	Issue	Page
A QUICK FIX FOR A HANGING DOOR A Simple Remedy for Cargo Door Inflight Operation Problems	VOL. 12, NO. 2 APR-JUN '85	13
RAMP ACTUATOR DAMAGE Reversing a Bolt Can Prevent It	VOL. 8, NO. 1 JAN-MAR '81	14
SCOVILL FASTENERS How They Work, and How to Use Them	VOL. 7, NO. 2 APR-JUN '80	15
STATIC GROUND ASSEMBLIES Deleted From Landing Gear	VOL. 4, NO. 3 JUL-SEP '77	21
TORQ-SET SCREWS AND TOOLS Torq-Set Fasteners and Tools Described and Illustrated	VOL. 3, NO. 4 OCT-DEC '76	11
UPPER COWLING HINGE LUBRICATION Installing Grease Fittings to Lubricate Engine Cowling Hinge Pins	VOL. 4, NO. 4 OCT-DEC '77	15
UPPER NACELLE AND WING DRY BAY PLUMBING Keeping the Drain Lines Clear	VOL. 7, NO. 1 JAN-MAR '80	4
WARPED CREW DOORS	VOL. 6, NO. 3 JUL-SEP '79	14

ELECTRICAL AND AVIONICS

	Issue	Page
ACVOLTAGEREGULATORS Matching of Generator and Voltage Regulator	VOL. 4, NO. 4 OCT-DEC '77	16
APO-122 RADAR Basic Description and Operation	VOL. 4, NO. 4 OCT-DEC '77	3
THE BENDIX PPI-1P WEATHERVISION RADAR INDICATOR Description and Operation	VOL. 7, NO. 1 JAN-MAR '80	6
BOOST PUMP ELECTRICAL CONNECTOR for the Hydraulic Suction Boost Pump	VOL. 4, NO. 4 OCT-DEC '77	18
CHECKING AND ADJUSTING B-1235 HARTMAN CONTACTORS	VOL. 11, No. 1 JAN-MAR '84	3
CIRCUIT BREAKERS How They Protect Your Airplane	VOL. 8, NO. 4 OCT-DEC '81	12

	Issue	Page
ELECTRICAL SYSTEM An Introduction to C-130H and L-100-30 Electrical Systems	VOL. 6, NO. 4 OCT-DEC '79	22
THE HANDLING OF GYROS Protecting Gyros During Shipment	VOL. 6, NO. 4 JAN-MAR '79	14
HERCULES WIRE IDENTIFICATION Including a Cross-Reference Chat-t	VOL.I,NO.2 APR-JUN '74	9
HF ANTENNA WIRE BREAKAGE Preventing Corrosion Keeps Antennas on the Job	VOL. 10, NO. JUL-SEP '83	3 14
NEW ICE DETECTORS Description, Operation, and Maintenance of Solid-State Units	VOL. 8, NO. 1 JAN-MAR '81	17
NICAD (NICKEL-CADMIUM) BATTERIES Don't Leave "Well Enough" Alone	VOL. 1, NO. 4 OCT-DEC '74	10
PROTECTING UHF AND VHF ANTENNAS A Simple Way to Prevent Erosion Damage	VOL. 10, NO. APR-JUN '63	2 15
TERMINAL LUGS: STACKING THEM SAFELY Making Safe Connections When Securing Terminal Lugs	VOL. 10, NO. 4 OCT-DEC '83	6
TROUBLESHOOTING APQ-122 RADAR	VOL. 5, NO. 2 APR-JUN '78	3

ENGINES AND PROPELLERS

THE EXTERNAL SCAVENGE OIL FILTER VOL. 2, NO. 2

A GUIDE TO PROPELLER BLADE CARE VOL. 9, NO. 1

CRACKED PROPELLER DOME SHELL

Checklist for Oil Venting and

Differential Pressure Symtoms

HERCULES ENGINE TACHOMETER

HERCULES POWER PLANT RIGGING

HERCULES PROPELLER CONTROL

Using the Atmospheric Sump

Issue

Page

7

3

3

3

VOL. 3, NO. 2 14 APR-JUN '76

APR-JUN '75

JAN-MAR '82

VOL. 5, NO. 1

JAN-MAR '78

VOL.I,NO.2

APR-JUN '74

VOL.I, NO.f 8 JAN-MAR '74

14

SYSTEM

OIL LEVEL CHECK

ENGINES AND PROPELLERS (contd)

ENGINES AND PROPELLERS (cont)

	Issue	Page		Issue	Page
HINTS FOR MAINTAINING THERMOCOUPLES	VOL. 9, NO. 3 JUGSEP '82	6	USING THE TACH GENERATOR TEST FOR AN AUTO-TAC	VOL. 4, NO. 3 JUL-SEP '77	17
HOW TO RELEASE A LOCKED PROPELLER BRAKE Proven Techniques to Release a Balky Prop Brake	VOL. 12, NO. 4 OCT-DEC '85	8	WHERE DID THE OIL GO? Troubleshooting Engine Oil Losses	VOL. 2, NO. 3 JUL-SEP '75	14
MORE ABOUT RIG PINS Additional Data on Power Plant Rigging	VOL. 5, NO. 2 APR-JUN '76	35	FUELSYSTEM		
OIL PRESSURE TRANSMITTER VENT LINE ON JETSTAR ENGINES	VOL. 4, NO. 1 JAN-MAR '77	22		Issue	Page
POWER PLANT, PROPELLERS, AND THE APU on the C-130H and L-160-30	VOL. 6, NO. 4 OCT-OEC '79	12	CHEMICAL CONTROL OF FUEL TANK INFESTATION CONTROLLING MICROBIAL GROWTH in Aircraft Fuel Tanks	VOL. 10, NO. 3 JUL-SEP '83 VOL. 2, NO. 2 APR-JUN '75	8 10
PRESERVATION OF T-56 ENGINES	VOL.2, NO. 4 OCT-DEC '75	9	FUELSYSTEM An introduction to C-130H and	VOL. 6, NO. 4 OCT-DEC '79	9
PROPELLER VALVE HOUSING	VOL. 2, NO. 2 APR-JUN '75	19	L-100-30 Fuel Systems	vOL. 1. NO. 3	2
SECONDARY FUEL PUMP PRESSURE LIGHT FLICKER What Causes It and How to Correct It	VOL. 8, NO. 4 OCT-DEC '61	16	INDICATING SYSTEM HERCULES FUEL VENT SYSTEM Keep Obstructions Out	JUL-SEP '74 VOL. 1, NO. 1 JAN-MAR '74	14
SOLID-STATE OIL TEMPERATURE CONTROL THERMOSTATS Oil Cooling System Operation Reflects Thermostat Changes	VOL. 10, NO. 3 APR-JUN '83	3 10	LEAKY FASTENERS A Guide to Fuel Tank Fastener Leak Repair	VOL. 4, NO. 2 APR-JUN '77	3
SOLID-STATE OIL QUANTITY TRANSMITTERS	VOL. 12, NO. 2 APR-JUN '85	8	LOCATING LEAKS in Auxiliary Fuel Tanks by Color	VOL. 2, NO. 2 APR-JUN '75	14
How They Work. and How to Interpret the Indications			FUEL TANKS	OCT-DEC '82	3
STARTING FOR A LONGER ENGINE LIFE Understanding Engine Starting Events	VOL. 2, NO. 2 APR-JUN '75	3	MATERIALS FOR FUEL TANK MAINTENANCE A Helpful List of Materials, Stock Numbers, and Vendors	VOL. 8, NO. 2 APR-JUN '81	11
THERMOCOUPLES AND TIT Turbine Inlet Temperature Indicating System Operation	VOL. 9, NO. 3 JUL-SEP '82	3	NEW FUEL QUANTITY TANK PROBES	vOL. 4, NO. 1 JAN-MAR '77	22
TROUBLESHOOTING RPM FLUCTUATION Finding the Causes of Prop	VOL. a. NO. 2 APR-JUN 'EI	3	OVERBOARD FUEL VENTING The Chief Causes of Inadvertent Fuel Venting	VOL. 7, NO. 2 APR-JUN '80	3
TROUBLESHOOTING ENGINE START PROBLEMS	VOL. 4, NO. 1 JAN-MAR '77	23	RECLAIMING FUEL COMPENSATOR UNITS Some Units Damaged by Moisture Can Be Restored	VOL. 5, NO. 3 JUL-SEP '78	14
TURBINE TEMPERATURE TROUBLESHOOTING Detecting Abnormal Temperature Conditions	VOL.I,NO.4 OCT-DEC '74	3	REPAIR OF RUBBER COVERING ON INFLIGHT REFUELING HOSES	VOL. 4, NO. 2 APR-JUN'77	15
Comportation Contantions			SOLDERING FUEL QUANTITY INDICATING SYSTEM CONNECTORS	VOL. 8, NO. 2 APR-JUN '81	18

FUEL SYSTEM (cor	ntd)	L	HYDRAULICS (co	intd)	1
	Issue	Page		Issue	F
UPPER REFUELING TUBE INSTALLATION A Special Tool Can Simplify the Procedure	VOL. 8, NO. 2 APR-JUN '81	16	NEW CHECK VALVE for Hercules Hydraulic Pump Pressure Lines	VOL. 4, NO. 2 APR-JUN '77	
			NEW FILTER ELEMENTS for Hercules Hydraulic Systems	VOL. 2, NO. 1 JAN-MAR '75	
HYDRAULICS			NEW HYDRAULIC PUMP Limits Temperature	VOL. 2, NO. 3 JUL-SEP '75	
	Issue	Page	O-RINGS An Updated Compilation of O-Ring Data	VOL. 11, NO. 3 JUL-SEP '84	3
AFT CARGO DOOR ACTUATOR MODIFICATION	VOL. 10, NO. 2 APR-JUN '83	9	OPENING THE HERCULES RAMP Using the Auxiliary System	VOL. 1, NO. 4 OCT-DEC '74	
DON'T SLAM THE DOOR	VOL. 4, NO. 1 JAN-MAR '77	17	PREFORMED PACKINGS	VOL. 3, NO. 1 JAN-MAR '76	
ENGINE-DRIVEN HYDRAULIC PUMPS: A BRIEF HISTORY	VOL. 10, NO. 2 APR-JUN '83	3	PRESSURE INDICATOR LAG	VOL. 2, NO. 4 OCT-DEC '75	
FLARELESS FITTINGS	VOL.1,NO.I JAN-MAR '74	3	SEALS FOR HERCULESPUROLATOR HYDRAULIC FILTERS	VOL. 3, NO. 3 JUL-SEP'76	
HERCULES FLAP SYSTEM A Brief Description of the Hercules Flap System	VOL. 4, NO. 1 JAN-MAR '77	18	A Chart Listing the Seals Required to Service Hydraulic Filters		
HEACULESFLAPSYSTEM A Review of the Major Components and System Operation	VOL. 12, NO. JUL-SEP '85	3 16	SERVICING HERCULES HYDRAULIC FILTERS	VOL. 3, NO. 1 JAN-MAR '76	
HOW TO BLEED A HERCULES	VOL. 1, NO. 2	11	TWO DIFFERENT HERCULES ENGINE DRIVEN HYDRAULIC PUMPS	VOL. 1, NO. 3 JUL-SEP '74	
HYDRAULIC PUMP — AND KEEP IT CLEAN	APR-JUN '74		VERY HIGH PRESSURE HYDRAULICS — ITS HERE	VOL. 12, NO. 3 JUL-SEP '85	3
HYDRAULIC FLUID INTER- CHANGE BETWEEN SYSTEMS Accumulator Trouble Can	VOL. 3, NO. 3 JUL-SEP '76	16	Systems With 8000 PSI, Non- flammable Fluid Begin Tests		
HYDRAULIC FLUID TRANSFER	VOL. 9, NO. 2	11			
Between Systems					
HYDRAULIC PRESSURE DROP Hydraulic Pressure Changes During Flight Control and	VOL. 6, NO. 3 JUL-SEP '79	15	AIRCRAFT WHEEL INSPECTION	Issue VOL. 5, NO. 1	
THE HYDRAULIC SYSTEMS An Introduction to the C-130H	VOL. 6, NO. 4 OCT-DEC '79	19	HERCULES HIGH-ENERGY BRAKES Single-Disk Versus Multi-Disk	VOL. 2, NO. 1 JAN-MAR '75	
and L-100-30 Hydraulic Systems NTERCONNECT VALVE	VOL. 2, NO. 4	10	HERCULES MLG BALLSGREW LUBE Side Lubrication Fitting Modified	VOL. 4, NO. 4 OCT-DEC '77	
POSITIONING PROCEDURE	OCT-DEC '75 VOL. 10, NO. 1	13	HOT BRAKES Causes of Overheated Brake8	VOL. 4, ND. 3 JUL-SEP '77	
A New Approach to Hydraulic Fitting Repair	JAN-MAR '83		JETSTAR NOSE STEERING SYSTEM	VOL. 1, NO. 1 JAN-MAR	'7

LANDING GEAR (contd)

	Issue Page		lesue	Page
KEEPING THE PRESSURE ON Continuously Applied Gear	VOL. 10, NO. 1 6 JAN-MAR '83	THINNER SERRATED PLATES for Hercules Main Landing Gear	VOL. 4, NO. 3 JUL-SEP '77	21
KEEPUPTHEPRESSURE	VOL. 3, NO. 2 15 APR-JUN '76 A	TIPS FOR MLG INSPECTION, MAINTENANCE, AND EMERGENCY CTION	VOL. 9, NO. 3 JUL-SEP '82	13
for Inflating JetStar Tires		TIRES Operation, Meintenanoe, and	VCL4,NO. a JUL-SEP ."77	а
Means MLG Trouble	JAN-MAR '79	Handling Tips	VOL. 7, No.2	19
MAIN LANDING GEAR FRICTION WASHER SPLASH GUARD	VOL. 12, NO. 3 22 JUL-SEP '85	Preferred Spare Now Available	APR-JUN '80	2 42
MARK II ANTISKID Description, Operation, and Troubleshooting	VOL. 6, NO. 1 3 JAN-MAR '81	PROCEDURE storing Jammed Ring Spring Assemblies to Service	APR-JUN '83	2 12
MLG BRAKE APPLICATION AFTER LOSS OF HYDRAULIC PRESSURE	VOL. 11, NO. 2 7 APR-JUN '84			1
MLG MANUAL GEARBOX Techniques for Proper Operation of the Manual Gearbox	VOL.7, NO.3 10 JUL-SEP '80	OPERATIONS	J	
MLGTRACKSHOECLEARANCES	VOL. 6, NO. 1 10		Issue	Page
A New Tool Simplifies Adjustments	JAN-MAR '79	DESERT OPERATIONS Protecting Your Aircraft in an Arid Environment	VOL. 8, NO. 4 OCT-DEC '81	11
MLGUPPERSHOEASSEMBLY MODIFICATIONS Design Changes Give Shoe Facings Longer Life.	JUL-SEP '79	FLIGHT LINE OBSTACLE COURSE Caution During Taxiing or Towing	VOL. 2, NO. 1 JAN-MAR '75	3
NEW ALLOY for JetStar Landing Gear Shock Struts	VOL.2,NO.1 12 JAN-MAR '75	HERCULES FLIGHT TRAINING CENTER The Best in Hercules Aircrew Training	VOL. 12, NO. 2 APR-JUN '85	2 3
NEW PIN AND BUSHING FOR MLG SHELF BRACKET	VOL. 11, NO. 2 11 APR-JUN '84	HERCULES GROUND HANDLING Tips on Towing, Parking,	VOL. 3, NO. 3 JUL-SEP '76	3
NOSE LANDING GEAR SHIMMY The Causes of NLG Shimmy, and How to Correct Them	VOL. 12, NO. 4 3 OCT-DEC '85	Mooring, and Jacking the Hercules HERCULES TOWBAR SHEAR BOLTS	VOL. 4, NO. 3	22
NOSE LANDING GEAR SWITCH ADJUSTMENTS	VOL. 5, NO. 3 13 JUL-SEP '78	An Explanation of Shear Bolt Function	JUL-SEP '77	
NOSE WHEEL SHIMMY and What to Do About It	VOL. 3, NO. 1 18 JAN-MAR '78	HOW TO MOVE AN INCOMPLETE HERCULES	VOL. 2, NO. 1 JAN-MAR '75	4
SAFETY WIRE FOR HERCULES MLG TORQUE TUBE YOKE	VOL. 3, NO, 4 15 OCT-DEC '76	KC-13OR FLIGHT SIMULATOR A Brief Description	VOL. 4, NO. 4 OCT-DEC '77	9
SHOCK STRUT SERVICING	VOL. 7, NO. 3 13 JUL-SEP '80		S	1
STEEL CYLINDERS FOR THE	VOL. 1, NO. 2 12			1.000
YOU Can Install These			Issue	Page
rielelleu opales		A/C TEMPERATURE CONTROL SYSTEM CHECKOUT	VOL. 5, NO. 4 OCT-DEC '78	11

LANDING GEAR (contd)

PNEUMATICS AND ENVIRONMENTAL (contd)

PNEUMATICS AND ENVIRONMENTAL (contd)

	Issue	Page		Issue	Page
THE AIR TURBINE MOTOR Description, Operation, and Troubleshooting	VOL. 7, NO. 4 OCT-DEC '60	11	SPARE NUTS FOR V-BAND COUPLINGS Size and Part Number Designations for V-Band	VOL. 4, NO. 4 OCT-DEC '77	18
BENDIX STARTERS Description, and Hints on Installation and Operation	VOL. 5, NO. 4 OCT-DEC '76	3			
FIRST AID FOR THE	VOL. 3, NO. 3	23	A Special Dye Helps Pinpoint Leak Sources	VOL. 9, NO. 2 APR-JUN '82	10
HERCULESTEMPERATURE CONTROL SYSTEM	JUL-SEP '76		STARTER SERVICING	VOL. 3, NO. 4	11
THE FORGOTTEN SCREENS Cleaning Screens in the	VOL. 2, NO. 4 OCT-DEC '75	14		OCT-DEC '76	
Air Conditioning System			TROUBLESHOOTING AIR CONDI- TIONING SYSTEM TEMPER-	VOL. 12 NO. 4 OCT-DEC '85	11
HERCULES AIR CONDITIONING A Basic Description of the	VOL 3, NO. 2 APR-JUN '76	2			
			PROBLEMS	OCT-DEC '81	3
OXYGENSYSTEM	JUL-SEP '78	3	C		
and Safety Tips			TOOLS AND		1
HERCULES NEW AIR CONDITIONING UNITS	VOL. 3, NO. 3 JUL-SEP '76	18	- Canoone sorroin Ed		and and
Changes to the Hercules Air Conditioning System				Issue	Page
HERKY'S NEW APU	VOL. 3, NO. 4	3	MODIFICATION	VOL. 11, NO. JAN-MAR '84	1 14
of the New APU for the Hercules	OCI-DEC 76		ENGINE PERFORMANCE CALCULATOR KIT A Better Way to Check Engine	VOL. 12, NO. APR-JUN '85	2 7
HOW JETSTARS KEEP THEIR COOL	VOL. 1, NO. 3 JUL-SEP '74	20			-11
HOW THE 186th FCS LICKED A	VOL. 1, NO. 3	20	BORESCOPE	OCT-DEC '81	••
	JUL-SEP '74		A HANDY NOSE LANDING GEAR RIGGING TOOL	VOL. 6, NO. 1 JAN-MAR '79	9
NEW HEATEXCHANGERSFORTHE HERCULES AIRCRAFT	VOL. 10, NO. 4 OCT-DEC '63	3	IMPROVING THE GENERAL PURPOSE	VOL. 11, NO.	2 13
Lower Maintenance Costs			SLING ASSEMBLY	APR-JUN '84	
OXYGEN SAFETY	VOL. 1, NO. 1 JAN-MAR '74	10	LEADING EDGE HINGE PIN	APR-JUN '77	14
PNEUMATIC SYSTEMS An Introduction to the C-I30H and	VOL. 6, NO. 4 OCT-DEC '79	15	LOCKHEED INTRODUCES AVWASH A Clean Aircraft in Less Time, at Lower cost	VOL. 12, NO. APR-JUN '85	2 11
		0	MLG TRACK SHOE SHOP AID A Helpful Tool For Track Shoe	VOL. 7, NO. 4 OCT-DEC '80	16
(TEFLON)	JAN-MAR '75	9	Maintenance		
SOLID-STATE COMPONENTS	VOL 5 NO 3	12	NEW FCS-105/C-12 SIMULATION TEST SET	VOL. 11, NO. APR-JUN '64	29
For Hercules Air Conditioning Systems	JUL-SEP '76	12	NEW LOCKHEED-DESIGNED SYNCHROPHASERTESTSETS	VOL. 12, NO. JUL-SEP '85	3 15

TOOLS AND

GROUND SUPPORT EQUIPMENT

	issue	Page
PROP REMOVAL AND INSTALLATION AID A Modified Stand Can Speed the Work	VOL. 10, NO. 4 DCT-DEC '83	4 15
A QUICK WAY TO DRAIN HERCULES AUX TANKS	VOL.1,NO.2 APR-JUN '74	6
SMP-515-E, ILLUSTRATED TOOL AND EQUIPMENT MANUAL A Catalog of Special Tools and Support Equipment	VOL 11, NO. 4 OCT-DEC '84	14
TESTING THE GTF-6 TEST SET Making Sure It's Safe to Use	VOL. 8, NO. 1 JAN-MAR '81	16
TOOLS FOR PANELOCS	VOL. 7, NO. APR-JUN '80	17
TROOP SEAT INSTALLATION TOOL New Tool Facilitates Installation	VOL. 8, NO. JAN-MAR '8'	-17
TURNBUCKLE TOOLS	VOL.I,NO.4 GCT-DEC '74	5
WASHING THE HERCULES A Clean Airplane Lasts Longer	VOL. 2, ND. 4 OCT-DEC '75	3
WINDSHIELD WIPER ALIGNMENT	VOL. 1, NO. 4 OCT-DEC '74	
MISCELLANEOUS	6	
	Issue	Page
THE AMAZING HERCULES Airlifter for Today and Tomorrow	VOL. 5, NO. 2 APR-JUN '78	23
ARRS Aerospace Rescue and Recovery	VOL6,NO.2 APR-JUN '79	14

Service AUSTRALIA CELEBRATES 25 YEARS VOL. 11, NO. 1 17 WITH THE C-130 JAN-MAR '84 C-130 DERIVATIVES (1982) VOL. 9, NO. 3 7 A Listing of C-130 Derivatives JUL-SEP '82 in Chart Form C-130 TECHNICAL PUBLICATIONS VOL. 7, NO. 3 3 A Key Part of Your Hercules Program JUL-SEP '80 C-130Hs FOR JAPAN VOL. 11, NO. 2 15 APR-JUN '84 A DISTINGUISHED PAST VOL. 6, NO. 3 19

Mileslone in 25 Years of Hercules JUL-SEP '79 **Aircraft Production**

MISCELLANEOUS (contd)

	Issue	Page
EMERGENCY SERVICES Full Service Product Support	VOL. 6, NO. 2 APR-JUN '79	22
FIRE ON THE FLIGHT DECK! A Maintenance "Solution" Falls Victim to Murphy's Law	VOL. 10, NO. 1 JAN-MAR '83	3
FIRST FLIGHT OF MODIFIED JETSTAR	VOL. 2, NO. 2 APR-JUN '75	23
HTTB-THE HIGH TECHNOLOGY TEST BED Lockheed's Unique, Flying Laboratory Enters Service	VOL. 12, NO. 3 JUL-SEP '85	3
AN INTRODUCTION TO NON. DESTRUCTIVE EVALUATION	VOL. II, NO. 2 APR-JUN '84	3
JETSTAR II Advance Data on New Configuration	VOL. 2, NO. 2 APR.JUN '75	20
LIQUID PENETRANT EVALUATION A Quick and Reliable NDE Technique	VOL. 11, NO. 4 OCT-DEC '84	3
LOCKHEED AIRCRAFT SERIAL NUMBERS Identifies Production Sequence Only	VOL. 2, NO. 2 APR-JUN '75	19
LUBRICANTS FOR HERCULES AIRCRAFT A Helpful List of Lubricants and Distributors	VOL. 9, NO. 2 APR-JUN '82	3
MEETTHEHERCULES The Advanced C-130H and the L-100-30	VOL. 6, NO. 4 OCT-DEC '79	3
NEW AIRCRAFT STATUS DESIGNATIONS	VOL. 5, NO. 2 APR-JUN '78	35
A PROMISING FUTURE New Derivatives for the 1980s and Beyond	VOL. 6, NO. 3 JUL-SEP '79	22
THE STANDARDIZED LOGISTICS MANAGEMENT SYSTEM A Better Way to Maintain High Technology Products	VOL.I,NO.2 APR-JUN '74	7
SATVI	R	

